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ABSTRACT
Clinical trials in the era of precision cancer medicine aim to identify
and validate biomarker signatures which can guide the assignment
of individually optimal treatments to patients. In this article, we pro-
pose a group sequential randomized phase II design, which updates
the biomarker signature as the trial goes on, utilizes enrichment
strategies for patient selection, and uses Bayesian response-adaptive
randomization for treatment assignment. To evaluate the perfor-
mance of the new design, in addition to the commonly considered
criteria of Type I error and power, we propose four new criteria mea-
suring the benefits and losses for individuals both inside and outside
of the clinical trial. Compared with designs with equal randomiza-
tion, the proposed design gives trial participants a better chance to
receive their personalized optimal treatments and thus results in a
higher response rate on the trial. This design increases the chance
to discover a successful new drug by an adaptive enrichment strat-
egy, i.e. identification and selective enrollment of a subset of patients
who are sensitive to the experimental therapies. Simulation studies
demonstrate these advantages of the proposed design. It is illus-
tratedby an example basedon an actual clinical trial in non-small-cell
lung cancer.
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1. Introduction

Most human cancers are heterogeneous with respect to their molecular, genomic and
phenotypic properties and treatments that target specific molecules may only benefit a
subset of patients [15,26]. Thus, it is important to design efficient trials that offer optimal
treatments for as many patients as possible based on their biomarker profiles.

In contrast to traditional non-adaptive design methods, adaptive designs have recently
gained popularity due to their flexibility and efficiency. In 2006, the Pharmaceutical
Research and Manufactures of America (PhRMA) Working Group defined an adaptive
design as a design that allows modification of the on-going study based on accumulating
data, without undermining the validity and integrity of the trial [10]. Examples of adaptive
designs include those that use adaptive randomization [18], sample size re-estimation [16],
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changes to eligibility criteria [41], and early stopping rules for safety, futility or efficacy [23].
Adaptive randomization procedures can use a frequentist framework [19] or a Bayesian
framework [5]. Commonly used adaptive randomization methods include treatment-
adaptive randomization, covariate adjustment randomization and response adaptive ran-
domization [43]. Bayesian adaptive randomizationmethods allow the combination of prior
knowledge and observed data to learn about parameters of interest [11]. Bayesian adap-
tive randomization procedures apply Bayes theorem repetitively based on accumulating
data to adjust the randomization probability for each newly enrolled patient. Such pro-
cedures may be considered more ethical by assigning more patients to the more effective
treatment arm. Several randomized phase II clinical trials have adopted Bayesian adaptive
randomization, including BATTLE and I-SPY2 [2,14,22,36]. Randomized phase II trials
are becoming attractive in the modern era because they greatly enhance the potential for
biomarker discovery and can assure optimal use of limited phase III financial and patient
resources [24]. Based on this consideration, in this article, we propose a new design for
randomized phase II trials, which are exploratory rather than confirmatory in nature.

Recently, the rapid advancement of biomarker studies in oncology has promoted the
development and application of precision medicine, previously known as ‘personalized
medicine’ [12,25]. Precision medicine targets a subpopulation of patients who are most
likely to respond to the treatment based on their characteristics or biomarker profile. Prog-
nostic biomarkers provide information on clinical outcome independently of the treatment
received, while predictive biomarkers provide information on clinical outcome for a partic-
ular treatment [31]. Prognostic biomarkers can be used to screen good and bad prognostic
patients, while predictive biomarkers can be used to measure how likely the patient will
respond to a particular treatment. Before using biomarker information in clinical practice,
it is essential to test the biomarkers for analytical and clinical validity and clinical utility
[33]. For the designs described in this paper, we focus on predictive biomarkers.

A biomarker adaptive design utilizes patient biomarker information measured at base-
line to allow adaptation based on previous patients’ responses. When the biomarker
classification used to categorize the sensitive status for potential patients are known before
the start of the clinical trial, a biomarker adaptive design is particularly useful. If the
biomarker classification is unknown, one may consider an adaptive signature design [9] or
the cross-validated variation of this design [7]. These designs use an equal randomization
approach but include a development stage and a validation stage to determine a sensitive
subset classifier. An adaptive enrichment design [35] allows changes to the enrollment cri-
teria as the trial proceeds. Restricting enrollment to patients who are most likely to benefit
from the treatment based on a classifier improves the efficiency of the clinical trial but may
require a longer time to accrue the targeted patients.

In this article, we propose a signature enrichment design with Bayesian response-
adaptive randomization (SEDAR). This design combines elements of adaptive signature
designs and adaptive enrichment designs. During patient enrollment, SEDAR uses an
enrichment strategy which oversamples the sensitive patient cohort and undersamples
the non-sensitive patients to form a selected mixture of the patient population. It also
applies Bayesian response-adaptive randomization, adaptively adjusting future allocation
probabilities based on the accumulated data. As a result, SEDAR has the advantages of
Bayesian adaptive randomization as well as an enrichment strategy, yielding a higher
overall response rate on the trial and other advantages described below. At the end of
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the trial, we test the treatment effect (1) in the selected mixture of sensitive and non-
sensitive patients and (2) in the sensitive patient subgroup, with the control of overall Type I
error rates.

In addition to the usual evaluation of statistical power, we propose four trial evaluation
criteria to assess the performance of the designs: current individual loss (CIL), future indi-
vidual loss (FIL), the probability of an individual in the trial receiving optimal treatment
(PCO) and the probability of a future individual receiving personalized optimal treatment
(PFO). These criteria evaluate the benefits for both trial participants and future patients
from the perspective of precision medicine, providing a more comprehensive assessment
of trial performance. Results are demonstrated in extensive simulations.

The rest of the paper is organized as follows. In Section 2, we briefly review the cross-
validated adaptive signature design, the adaptive enrichment design, and our Bayesian
response-adaptive randomization scheme. In Section 3, we describe our cross-validated
signature enrichment design with response-adaptive randomization. In Section 4, we
define the trial performance evaluation criteria. In Section 5, we report the results of simu-
lation studies to compare our proposed design with the cross-validated adaptive signature
design and the adaptive enrichment design. In Section 6, we present an example based on
the Iressa Pan-Asia Study (IPASS) [28]. In Section 7, we conclude with a brief discussion.

2. Review of adaptive signature designs, adaptive enrichment designs and
Bayesian adaptive randomization

As the name suggests, SEDAR combines cross-validated signature enrichment with
Bayesian response-adaptive randomization. In this section, we briefly review the cross-
validated adaptive signature design, the adaptive enrichment design, and the Bayesian
response-adaptive randomization method. For all the designs mentioned in this article,
we consider a two-arm clinical trial to compare the efficacy of an experimental treatment
E and a control treatment C.

2.1. Adaptive signature design (ASD)

When a reliable classifier for identifying sensitive patients is not available at the start of
the trial, an adaptive signature design [7,9] may be useful. If the overall test for treatment
effect is not significant, this design defines a development stage and a validation stage for
a sensitive patient subpopulation classifier. Since only a portion of patients contributes to
each stage, the cross-validated extension of the adaptive signature design [7] adopts a K-
fold cross-validation method to classify patients from the entire population and to adjust
the P value using a permutation test [34].

This design uses equal randomization. If the overall test is not significant, it will divide
patients into two cohorts: a development cohort and a validation cohort for determining
a sensitive subset classifier. The design controls the overall Type I error rate at α, where
α = α1 + α2. If the overall treatment effect is statistically significant at some pre-specified
level α1, then the experimental treatment is considered globally beneficial. Otherwise,
the adaptive signature design develops a sensitive patient classifier and tests whether the
classifier is useful for treatment selection at Type I error rate α2 (see Figure 1).
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Figure 1. Diagram for adaptive signature design (ASD) [7,9].

The determination of a sensitive patient subgroup is based on machine learning vot-
ing methods in two stages. The first stage identifies predictive biomarkers. The second
stage identifies sensitive patients based on the chosen predictive biomarkers from Stage I.
A patient in the validation set is classified as sensitive if the predicted odds ratio of experi-
mental armversus standard arm exceeds someprespecified value. The treatment effect only
in the sensitive patients in the validation cohort is then assessed at a prespecified reduced
Type I error rate α2 to test whether the classifier is useful for treatment selection.

The cross-validated adaptive signature design utilizes K-fold cross-validation to obtain
a final sensitive patient subset from the entire trial population. Since the sensitive patient
subset is obtained using cross-validation, a permutation test may be used to adjust the P
value [7].

2.2. Adaptive enrichment design (AED)

The adaptive enrichment design [35] restricts enrollment to sensitive patients, as defined
by an adaptive classifier function, and excludes all nonsensitive patients. Patients are
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Figure 2. Diagram for adaptive enrichment design (AED) [35]. CF denotes the sensitive status classifier
function.

grouped into blocks according to their entry time. For the initial patient block, equal ran-
domization is used to allocate patients to treatment arms. For subsequent patient blocks,
as illustrated in Figure 2, the probability of response is estimated for patient i with each
treatment E and C, based on the cumulative estimated response rates from patients in the
previous blocks. Let r̂i,x,E and r̂i,x,C denote the response rate of patient i with signatures x
when receiving E or C, respectively. The classifier function determines the sensitive status,
which is defined as

CF(r̂i,x,E, r̂i,x,C) = I(r̂i,x,E − r̂i,x,C > δ), (1)

where δ denotes the minimal clinical meaningful difference. Let ĈFi refer to the latest
estimate of the classifier function at the time of the entry of the ith patient. The classi-
fier function restricts entry into the trial to patients with ĈFi = 1, the sensitive patients,
and excludes patients whose ĈFi = 0, the non-sensitive patients. Newly enrolled patients
will be assigned to one of the treatment arms using equal randomization. The classifier will
be updated once a new block of data becomes available. The process is repeated until the
desired total number of patients is reached.

As the adaptive enrichment design will include mostly sensitive patients (except in the
initial patient block), it can improve the efficiency of the clinical trial and protect non-
sensitive patients from exposure to ineffective treatments. However, it can be difficult to
choose a strategy to update enrollment criteria and requires a longer time to accrue suf-
ficient number of sensitive patients than the traditional all-comers designs. Also, if the
treatment is effective in all patients, restricting enrollmentmay exclude patients whowould
benefit from participating in the trial [20].

2.3. Bayesian adaptive randomization

Adaptive randomization updates allocation probabilities based on currently enrolled
patient responses, assigningmore patients to themore effective treatments. Comparedwith
equal randomization, response-adaptive randomization places more emphasis on individ-
ual benefit and advantages, especially with complicated designs [1]. Some objections to
adaptive randomization include potential bias due to inhomogeneous patient population
throughout the trial, statistical inefficiency due to unbalanced patient allocation and the
requirement that responses be collected shortly after treatment [20]. Generally, the advan-
tages of response-adaptive randomization are more evident with larger sample sizes and
with larger differences between treatments.
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Bayesian adaptive randomization assumes that the allocation probability for treatment
E is proportional to the posterior probability P̂(r(i,E) > r(i,C)|data). The probability of
patient i receiving treatment E, Pi,E, is given by [30,37] as

Pi,E = P̂(r(i,E) > r(i,C)|data)w

P̂(r(i,E) > r(i,C)|data)w + P̂(r(i,E) ≤ r(i,C)|data)w
(2)

where w is a tuning parameter between 0 and 1. When w is equal to 0, there is equal ran-
domization. When w is equal to 1, Pi,E is the same as P̂(r(i,E) > r(i,C)|data). Common
practice is to set w equal to 1/2 or to use n/2N where n is the cumulative sample size [37].

3. Singature enrichment design with adaptive randomization (SEDAR)

We propose a cross-validated signature enrichment design with response-adaptive ran-
domization. For the initial block, we use equal randomization and let the initial block
size be twice that of the subsequent adaptive randomization blocks [42]. The framework
for subsequent patient blocks of the design is presented in Figure 3. We assume patient
responses can be observed shortly after receiving treatments. The enrollment procedure
for future patients is as follows:

(1) For each patient, apply the current sensitive patients classifier function (CF) derived
on data from previous blocks. This separates patients into one of the two categories:
sensitive and non-sensitive.

(2) If the patient is determined to be sensitive, randomize to E or C based on the Bayesian
adaptive randomization scheme.

(3) If the patient is determined to be non-sensitive, calculate the enrollment function
(EF = 1 with probability P; EF = 0 with probability 1-P). If EF = 1, randomize based
on the Bayesian randomization scheme as above; if EF = 0, the patient is off study
(i.e. not randomized). The details of determining the enrollment probability are given
in Section 3.1.

(4) After the current block is completely accrued, refine the classifier function based on
the additional results from the current block and repeat the steps above for the next
block.

As is commonwith all enrichment designs, it is difficult to calculate the required sample
size a priori. To estimate the total required sample size for our design, we first calculate
the sufficient sample size to reach the desired power using traditional methods for non-
enrichment designs [13]. Then we use simulations to modify the sample size for the given
design parameters.

3.1. Sensitive patient classifier function and enrollment function

After each block of data becomes available, we develop a sensitive patient classifier to screen
for future patients. Many classification algorithms have been studied for biomarker classi-
fier development [29,32]. Some popular choices include logistic regression, random forest
[3], support vectormachines [39] and diagonal linear discriminant analysis [6]. To estimate
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Figure 3. Diagram for signature enrichment design with adaptive randomization (SEDAR). CF is the
classifier for determining patient sensitive status; EF is the enrollment function; Pi is the probability of
enrolling the ith patient.

the probabilities of response for a patient with the experimental or control treatment, many
statistical models or algorithmic methods, e.g. logistic regression and random forests, may
be used [21]. For our proposed design, we use a random forest approach. In practice, a
different classification algorithmmay be used depending on trial-specific consideration. A
brief description of the random forest technique is summarized below. More details can be
found elsewhere [17].

Random forests grow a large collection of de-correlated decision trees [4]. Each tree
starts with drawing a bootstrap sample from the original dataset. At each node, a best split is
determined among a randomly selected subset of the total input variables.When a random
forests approach is used for classification purpose, the class prediction is the majority vote
from the total number of decision trees. The class probabilities are the proportion of votes
from the ensemble of trees.

At an early stage of the clinical trial, the available patient data to build a classifier is
limited. In contrast to the adaptive enrichment designs that restrict entry into the trial
to sensitive patients, we use an enrichment strategy which will include both sensitive and
non-sensitive patients but with different enrollment probabilities. Let δ denote theminimal
clinical meaningful difference and r̂i,x,E and r̂i,x,C denote the estimated response rates for
potential patient iwith signatures x if receiving treatment E orC, respectively. The sensitive
patient status is determined in the same way as AED, which is:

CF(r̂i,x,E, r̂i,x,C) = I(r̂i,x,E − r̂i,x,C > δ), (3)

Let ĈFi refer to the latest estimate of the classifier function at the time of entry of the ith
patient. If ĈFi = 1, then patient i is sensitive; otherwise, the patient i is non-sensitive. For
sensitive patients, the probability of enrollment is 1. For non-sensitive patients, we use a
continuous function as the enrollment function to determine the enrollment probability
for patient i with signatures x. The enrollment probabilities are calculated as

Pi = min
{
max

(
r̂{i,x,E} − r̂{i,x,C}

δ
, 0.10

)
, 1

}
(4)

Thus, the probability for sensitive patients is 1 (i.e., all sensitive patients are enrolled) and
for non-sensitive patients the enrollment probability is between 0.1 and 1.When all patient
data are available, we build a final sensitive patient subset classifier. In our design, we use
random forests as the algorithm for sensitive status classification.
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During the trial process, we screen sensitive patients to enroll in the next block. This
sensitive patient classifier is built on the previous patient response, treatment received and
biomarker information. At the final analysis, the classifier is developed by cross-validation
based on complete patient data, as described in the next subsection. The sensitive patient
subset selected is used to test the treatment effect difference in the sensitive subgroup.

3.2. Bayesian decision rule

The proposed design tests the difference of the treatment effect between E and C (1) in
the selected mixture of sensitive and nonsensitive patients and (2) in the sensitive patient
subset using Bayesian decision rules, as described below.

To test the treatment effect in the sensitive population, we first identify the overall sen-
sitive patient subset from the entire trial population using 10-fold cross-validation. This
technique is also used in the cross-validated extension of the adaptive signature design
[7]. For K-fold cross-validation, the entire trial population is randomly partitioned into K
nonoverlapping equal-sized subpopulations. In the final analysis, one of theK folds is used
as the validation cohort, and the restK−1 folds are treated as the development cohort and a
sensitive patient subset Sk (k = 1, . . . ,K) is developed. This procedure is repeatedK times.
Each patient appears once in the validation cohort and K−1 times in the development
cohort. Then the sensitive patient subset from the entire trial patients is S = ⋃K

k=1 Sk.
At final analysis, arm E is claim efficacious if

P̂r(rE > rc | data) > aU (5)

where aU is a cut-off parameter whose value is tuned to control the Type I error rates.
The Type I error rate for testing treatment effect in the selected mixture of sensitive and
nonsensitive patients is α1, and for testing treatment effect in the sensitive subset it is α2,
so that the overall Type I error rate α = α1 + α2. That is, we calibrate different aU values
for the selected mixture analysis and for the sensitive subset analysis to control their Type
I error rates.

3.3. Required design parameters

The required design parameters (Table 1) are the sample size for the initial equal random-
ization block (N0) and for the adaptive randomization blocks (Nbar). Then the total sample
sizeN = N0 + m ∗ Nbar, wherem+ 1 is the total number of blocks. Additionally, the pro-
posed design requires one to specify the tuning parameter w; minimal clinical difference
δ for sensitive status classification; the Type I error rate for testing the treatment effect in
the selected mixture of patients (α1) and the Type I error rate for testing treatment effect
in the sensitive subset only (α2).

4. Trial performance evaluation criteria for simulations

In addition to commonly used operating characteristics such as the average response rate
and power, we propose the following trial performance evaluation criteria for simulation
studies of a signature clinical trial:
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Table 1. Design parameters required for the signature enrichment design with Bayesian adaptive
randomization.

N0 Sample size for the initial equal randomization block
Nbar Sample size for adaptive randomization blocks
N Total sample size
w Tuning parameter
δ minimal clinical difference for sensitive status classification
α1 Type I error rate for testing treatment effect in selected mixture of patients
α2 Type I error rate for testing treatment effect in sensitive subset

• Current individual loss (CIL)
• Future individual loss (FIL)
• Probability of a current individual in the trial receiving personalized optimal treatment

(PCO)
• Probability of a future individual receiving personalized optimal treatment (PFO)

For CIL and FIL, we first define a match for enrolled and future patients. For currently
enrolled patients, a match occurs when the patient’s actual treatment received is the same
as the best treatment from the true model. For future patients, a match occurs when the
superior treatment selected based on the final fittedmodel is the same as the best treatment
from the true model. For a currently enrolled patient i with signature x, let P̂i(Y = 1|T, x)
denote the probability of responding to the received treatment T. Similarly, for a poten-
tial future patient, P̂i(Y = 1|T, x) refers to the probability of responding to treatment T
as determined by the fitted model. Let P̂i(Y = 1|T = OPT, x) denote the probability of
responding to the optimal treatment determined by the true model. Then we define the
personalized loss function as the follows:

Loss(i) =
{
0 if it is a match
P̂i(Y = 1|T, x) − P̂i(Y = 1|T = OPT, x) if there is not a match

(6)

Then CIL and FIL are the average values of the individual loss for trial participants and for
future patients, respectively. A small value of CIL indicates that most currently enrolled
patients have received the treatment that they will respond at least similarly as the optimal
treatments according to the true model. The interpretation is similar for FIL.

The PCO and PFO quantities are the probabilities of receiving the personalized optimal
treatment for trial participants and future patients, respectively. PCO can be estimated as
the average fraction of matches between the optimal treatment selection by the true model
and by the patients’ actual treatment received.

PFO is the probability of a future patient receiving the personalized optimal treatment if
the treatment recommendation from the trial were followed. It can be estimated as the aver-
age fraction of matches for prospective patients between the optimal treatment selections
by the true model and by the final fitted model. A large value in PCO and PFO indicates
that most patients have received and will receive their optimal treatments determined by
the true model, respectively.

The main differences between CIL & FIL and PCO & PFO are that for CIL and
FIL, the penalties for non-matches depend on the individual loss; for PCO and PFO, all
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non-matches receive the same penalty. Small values of CIL and FIL, and large values of
PCO and PFO are desirable.

5. Simulation studies

We performed a series of simulations to evaluate our design and compared it with the
adaptive signature design and the adaptive enrichment design. For all the designs, we
implemented the cross-validated procedures to search for final sensitive subsets from the
entire patient population. To make ASD and AED comparable to SEDAR, all the designs
used the Bayesian decision rules described above at final analyses.

We assume a two-treatment clinical trial designed to compare a control treatment
(C) with an experimental treatment (E). We include situations where the experimental
treatment is effective only in a sensitive subset. LetTi denote the treatment indicator which

Ti =
{

0.5 Treatment = E
−0.5 Treatment = C

, i = 1, . . . , n. (7)

5.1. Simulation setting

The total sample size N is set at 300; the size of the adaptive randomization blocks Nbar
is set at 50. We choose the size N0 of the initial block, for which equal randomization is
used, to beN0 = 100. Hence, we have a total of 5 blocks of sizes 100, 50, 50, 50 and 50. The
tuning parameter for Bayesian adaptive randomizationw is set at 0.5. The minimal clinical
meaningful difference delta for sensitive patient status qualification is set at 0.1. The Type
I error rate α1 for testing treatment effect for the selected mixture of patients is controlled
at 0.04, and the Type I error rate α2 for testing treatment effect in the sensitive subset is
controlled at 0.01.

We generate the ith patient’s response from the following logistic regression model with
ten biomarkers:

logit(ri) = β0 + β1Ti +
10∑
k=1

γkXki +
10∑
k=1

ηkTiXki, i = 1, . . . , 300; k = 1, . . . , 10. (8)

where Xki is the kth biomarker/signature for patient i. Each biomarker Xki is assumed to
follow a normal/multivariate normal distribution with mean of 0.5 and standard deviation
of 1.0.

For the Bayesian adaptive randomization, we assume the prior is

β0,β1, γk, ηk ∼ Normal(μ = 0, σ 2 = 100).

At the final analysis, for each treatment arm, we use a non-informative prior Beta(1, 1).
We consider three categories of biomarker distributions. For each type, we include four

scenarios and a null scenario to compare the performance of SEDAR with ASD and AED
(Table 2). The biomarker or biomarker-treatment interaction effects not presented in the
table are assumed to be zero.

For the first category, we assume all biomarkers are independently distributed follow-
ing a normal distribution with mean 0.5 and variance 1.0. For scenarios 1 and 2, we
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Table 2. Simulation scenarios.

β0 β1 γ1 η1 γ6 η6

x1 to x10 are continuous with ρ = 0.00 Scenario 1 −0.8 0.0 0.0 0.0 0.0 0.0
Scenario 2 −0.8 0.0 0.8 0.8 0.0 0.0
Scenario 3 −0.8 0.0 0.3 1.1 0.0 0.0
Scenario 4 −0.8 0.0 0.3 0.3 0.7 0.7
Scenario 5 −0.8 0.0 0.4 0.4 1.1 1.1

x1 to x5 are continuous with ρ = 0.25 Scenario 6 −0.8 0.0 0.0 0.0 0.0 0.0
x6 to x10 are continuous with ρ = 0.00 Scenario 7 −0.8 0.0 0.8 0.8 0.0 0.0

Scenario 8 −0.8 0.0 0.3 1.1 0.0 0.0
Scenario 9 −0.8 0.0 0.3 0.3 0.7 0.7
Scenario 10 −0.8 0.0 0.4 0.4 1.1 1.1

x1 to x5 are continuous with ρ = 0.75 Scenario 11 −0.8 0.0 0.0 0.0 0.0 0.0
x6 to x10 are continuous with ρ = 0.25 Scenario 12 −0.8 0.0 0.8 0.8 0.0 0.0

Scenario 13 −0.8 0.0 0.3 1.1 0.0 0.0
Scenario 14 −0.8 0.0 0.3 0.3 0.7 0.7
Scenario 15 −0.8 0.0 0.4 0.4 1.1 1.1

consider only X1 and the corresponding treatment interaction affect the response with dif-
ferent magnitude. For scenarios 3 and 4, we assume X1 and X6, and their interactions with
treatment will affect the patient response with different scales.

For the second category, we assume the first five biomarkers have a multivariate nor-
mal distribution X ∼ NVM(0.5,	) with covariance matrix which has 1 for the variance
and 0.25 for ρ. The other five variables are still independently distributed with a normal
distribution with mean 0.5 and variance 1.0. For scenarios 7 and 8, we consider only X1
and the corresponding treatment interaction affect the response. For scenarios 9 and 10,
we assume one biomarker from the first five correlated biomarkers, X1 and its interaction
with treatment and another biomarker from the independent biomarker group, X6 and its
interaction with treatment, affect the response.

For the third category, we assume the first five biomarkers have a multivariate nor-
mal distribution with mean 0.5 and covariance matrix with ρ = 0.75, and the remain-
ing five biomarkers have a multivariate normal distribution with mean 0.5 and covari-
ance matrix with ρ = 0.25. The simulation scenarios are similar to the other two
categories.

All the categories and scenarios are listed in Table 2. The null scenarios for each
category numbers 1, 6 and 11, respectively. For each scenario, we generated 5000
simulations.

5.2. Simulation results

We compare the results obtained using our proposed design with those obtained using
ASD and AED. The results for the estimated power are presented in Table 3. In the null
scenarios, the Type I error rates for the treatment effect in the selected mixture patient
group and the sensitive subgroup are controlled at 0.04 and 0.01, respectively.

For the rest of the scenarios, ASD always has the lowest power, while AED or SEDAR
has the highest power. In Scenario 3, 8, 13, AED has a higher power than SEDAR. For
example, in Scenario 3, the power in the patient mixture for ASD, AED and SEDAR are
0.744, 0.987 and 0.968, respectively. In the sensitive subgroup, the power is 0.721 for ASD,
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Table 3. Comparison of three designs.

SCEN Parameters Design Mixture power Sens power ORR CIL FIL PCO PFO

1 NULL ASD 0.010 0.010 0.010 0.310 0.000 1.000 1.000
AED 0.037 0.010 0.011 0.310 0.000 1.000 1.000
SEDAR 0.038 0.011 0.008 0.310 0.000 1.000 1.000

2 γ1 = η1 = 0.8 ASD 0.510 0.300 0.410 0.073 0.031 0.501 0.715
AED 0.815 0.560 0.461 0.088 0.014 0.500 0.902
SEDAR 0.888 0.577 0.466 0.057 0.033 0.606 0.695

3 γ1 = 0.3 ASD 0.744 0.721 0.353 0.107 0.023 0.500 0.766
η1 = 1.1 AED 0.987 0.920 0.374 0.127 0.009 0.500 0.909

SEDAR 0.968 0.823 0.414 0.072 0.024 0.637 0.751

4 γ1 = η1 = 0.3 ASD 0.635 0.348 0.430 0.077 0.032 0.500 0.723
γ6 = η6 = 0.7 AED 0.854 0.590 0.472 0.090 0.014 0.500 0.911

SEDAR 0.911 0.614 0.483 0.059 0.034 0.610 0.701

5 γ1 = η1 = 0.4 ASD 0.794 0.602 0.478 0.097 0.028 0.500 0.771
γ6 = η6 = 1.1 AED 0.964 0.833 0.537 0.111 0.012 0.500 0.927

SEDAR 0.993 0.892 0.557 0.067 0.030 0.639 0.760

6 NULL ASD 0.040 0.008 0.310 0.000 0.000 1.000 1.000
AED 0.040 0.008 0.310 0.000 0.000 1.000 1.000
SEDAR 0.040 0.010 0.310 0.000 0.000 1.000 1.000

7 γ1 = η1 = 0.8 ASD 0.523 0.327 0.410 0.073 0.031 0.501 0.718
AED 0.807 0.587 0.463 0.088 0.013 0.499 0.908
SEDAR 0.894 0.594 0.468 0.057 0.033 0.607 0.697

8 γ1 = 0.3 ASD 0.744 0.693 0.353 0.107 0.023 0.500 0.767
η1 = 1.1 AED 0.990 0.931 0.377 0.128 0.009 0.500 0.917

SEDAR 0.974 0.842 0.415 0.073 0.024 0.636 0.752

9 γ1 = η1 = 0.3 ASD 0.653 0.362 0.430 0.077 0.032 0.500 0.725
γ6 = η6 = 0.7 AED 0.855 0.587 0.471 0.090 0.014 0.500 0.911

SEDAR 0.917 0.638 0.482 0.058 0.034 0.612 0.706

10 γ1 = η1 = 0.4 ASD 0.808 0.615 0.478 0.097 0.028 0.501 0.771
γ6 = η6 = 1.1 AED 0.971 0.826 0.537 0.111 0.013 0.500 0.926

SEDAR 0.991 0.895 0.555 0.068 0.030 0.637 0.756

11 NULL ASD 0.037 0.010 0.310 0.000 0.000 1.000 1.000
AED 0.039 0.010 0.310 0.000 0.000 1.000 1.000
SEDAR 0.038 0.009 0.310 0.000 0.000 1.000 1.000

12 γ1 = η1 = 0.8 ASD 0.514 0.329 0.412 0.073 0.029 0.500 0.732
AED 0.851 0.625 0.468 0.090 0.010 0.500 0.922
SEDAR 0.898 0.620 0.473 0.058 0.031 0.608 0.708

13 γ1 = 0.3 ASD 0.737 0.729 0.353 0.107 0.022 0.501 0.785
η1 = 1.1 AED 0.992 0.945 0.379 0.131 0.007 0.500 0.938

SEDAR 0.980 0.885 0.419 0.074 0.024 0.640 0.768

14 γ1 = η1 = 0.3 ASD 0.637 0.351 0.428 0.077 0.032 0.500 0.723
γ6 = η6 = 0.7 AED 0.852 0.585 0.472 0.090 0.013 0.500 0.914

SEDAR 0.909 0.631 0.485 0.059 0.035 0.610 0.696

15 γ1 = η1 = 0.4 ASD 0.798 0.606 0.478 0.097 0.029 0.501 0.770
γ6 = η6 = 1.1 AED 0.972 0.849 0.539 0.112 0.012 0.500 0.928

SEDAR 0.991 0.880 0.557 0.068 0.031 0.639 0.753

0.920 for AED and 0.823 for SEDAR. For the other scenarios, SEDAR achieves the highest
power in both the mixture of patients and sensitive subset. For scenario 7, the power in the
mixture of patients is 0.523 for ASD, 0.807 for AED and 0.894 for SEDAR.
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The results of the four additional trial performance evaluation criteria we proposed in
Section 4 are presented in Table 3. While both ASD and AED adopt an equal random-
ization approach when assigning patients to treatment arm, resulting in equal numbers of
patients per treatment arm, SEDAR assigns more patients to the superior treatment based
on baseline biomarker profiles and data accumulation during the trial. As a result, SEDAR
always achieves a higher objective response rate (ORR) than ASD and AED. For example,
in scenario 15, 55.7% of patients respond to the assigned treatment for SEDAR compared
to 47.8% for ASD and 53.9% for AED. AED results in a higher proportion of patients
who respond to the assigned treatment than ASD. This demonstrates that the enrichment
strategy allows more trial participants to achieve responses than the all-comers designs.

CIL and FIL measure the loss for trial participants and future patients. ASD and AED
have similar values of CIL, while SEDAR has much smaller values than the other designs.
Using scenario 5 as an example, CIL for SEDAR is 0.067 compared to 0.097 for ASD and
0.111 for AED. This difference in CIL shows that SEDAR results in more trial participants
receiving optimal treatments. For FIL, the results are similar for ASD and SEDAR, but AED
has the smallest values in all scenarios. This shows that a complete enrichment strategymay
allow more future patients to receive their optimal treatments.

SEDAR also has higher PCO values than the other designs. That is, SEDAR results in a
higher proportion of enrolled patients receiving their optimal treatments as defined by the
true model. Similar to the relative performance among the three designs, SEDAR and ASD
show similar results for PFO, which refers to the probability for a future patient receiving
the personalized optimal treatment if the treatment recommendation from the trial were
followed.

The results for true and the estimated treatment effects are presented in the supple-
mental materials. Tables 1S and 2S show the results for the selected mixtures of sensitive
and nonsensitive patients. Tables 4S and 5S show the results for the sensitive patient sub-
set. In these tables, the estimated treatment effects and true effects match well. Table 3S
and 6S show the proportions of truly sensitive patients among the selected mixtures, and
the selected sensitive patients by the final fitted model. According to the results, AED tri-
als have the highest proportion of truly sensitive patients, following by SEDAR and ASD,
demonstrating that enrichment strategies include more patients who are likely to respond
to the treatment than all comers designs, one of the key reasons for considering enrichment
designs.

More research is needed for estimating the causal effects of experimental treatment vs.
control. This is a challenging problem for many enrichment designs, especially when the
subsets for defining enrichment strategy can not be pre-specified due to lack of data and
knowledge on which biomarkers affect treatment effects. This is the situation we consider
in this article, in which the enrichment design itself serves as a search engine for sensitive
subsets.

6. Example

To illustrate our approach, consider the design of a trial in non-small-cell lung cancer
(NSCLC) comparing two treatment arms, one using a tyrosine kinase inhibitor (gefitinib)
and the other using standard chemotherapy (carboplatin plus paclitaxel), similar to the
Iressa Pan-Asia Study (IPASS) [28]. The single binary biomarker in this case is the EGFR
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Table 4. IPASS example: biomarker settings.

Biomarkers Gefitinib Chemotherapy

EGFR status
EGFR+ 0.50 0.50
EGFR− 0.50 0.50

Age
< 65 years 0.72 0.76
≥ 65 years 0.28 0.24

Gender
Male 0.20 0.21
Female 0.80 0.79

Smoking history
Non-smoker 0.938 0.936
Former light smoker 0.062 0.064

WHO performance status
0 or 1 0.90 0.89
2 0.10 0.11

mutation status, either positive or negative, with a prevalence of EGFR positive patients
of approximately 50% in Asian countries and approximately 20% in North America [27].
For the purpose of illustrating the application in the setting of this paper (binary response
assessed soon after the start of treatment), we consider the endpoint to be objective
response rate. Unfortunately, since the assessment of EGFR mutation status was not an
eligibility requirement, only 36% of the patients (437 of 1217) had a known status. To
conduct simulations using the IPASS study as a guide, we assume the prevalence of posi-
tive EGFR is 0.50 (commonly observed in an Asian population) and the response rates in
the various treatment arms and EGFR mutation status groups are as follows: 0.45 in the
chemotherapy arm for EGFR positive; 0.70 in the gefitinib arm for EGFR positive; 0.15 in
the chemotherapy arm for EGFR negative; and 0.10 in the gefitinib arm for EGFR negative
patients.

Although this example is presented as an illustration of the setting considered here, the
final endpoints in such a studywould ordinarily be progression-free survival (PFS) or over-
all survival (OS), not the response rates. In the initial results reported for the IPASS study,
there was improved PFS for gefitinib in the EGFR mutation-positive group but worse PFS
for gefitinib in the EGFRmutation-negative group. These results are suggested in the early
results but not definitively so except perhaps in the EGFR negative group because of the
dramatic early difference.

To apply our design to the IPASS study, we assume a total sample size of 440; an initial
block size of 176 patients, and subsequent adaptive randomization block size of 88 patients.
The overall Type I error rate is controlled at 0.05 with 0.04 for testing the treatment effect
in the mixture of sensitive and non-sensitive patients and 0.01 for testing in the sensitive
subset only. The clinical meaningful difference for enrolling sensitive patients is set at 0.1.

Following the approach used in the IPASS paper for progression-free survival [28], we
use the following covariates in a logistic regressionmodel for ORR, all as binary covariates:
Age (< 65 years vs. ≥ 65 years), Sex (Male, Female), Smoking history (non-smoker vs.
former light smoker), WHO performance status (0 or 1 vs. 2). We assume only the EGFR
mutation status and its interaction have a treatment effect. In the true model, no treatment
main effect is included. The prevalence of each biomarker stratum is presented in Table 4.
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Table 5. Simulation results: IPASS example.

Design Mixture Power Sens Power ORR CIL FIL PCO PFO

ASD 0.738 0.946 0.361 0.096 0.089 0.501 0.605
AED 0.995 0.993 0.442 0.121 0.035 0.449 0.838
SEDAR 0.999 0.982 0.446 0.063 0.051 0.662 0.768

For the given design parameters, the results are presented in Table 5. Generally, the
results confirm the conclusion drawn from the previous simulation studies. The power
of the mixture population is 0.738 for ASD; 0.995 for AED; and 0.999 for SEDAR, and of
the sensitive subset is 0.946 for ASD, 0.993 for AED and 0.982 for SEDAR. The objective
response rates among all trial participants are 0.361 by ASD; 0.442 by AED; and 0.446 by
SEDAR. In addition, SEDAR also has the lowest CIL index and high values for PCO. Thus,
our proposed design can assign more patients to receive their optimal treatments.

7. Discussion

In this article, we have proposed a signature enrichment design with adaptive randomiza-
tion for cancer clinical trials. Our proposed design builds on the advantages of the adaptive
signature design and the adaptive enrichment design. Assuming that patient responses can
be observed shortly after receiving treatment, our design adopts an adaptive enrichment
approach by developing a sensitive patient classifier to screen sensitive and non-sensitive
patients for enrollment. Once a patient enters the trial, we use response-adaptive random-
ization to adjust treatment allocation probabilities in a Bayesian framework. At the final
analysis, we use an adaptation of the adaptive signature designs. For testing the treatment
effect in the subset of sensitive patients, this design uses a cross-validated procedure to
efficiently identify sensitive patients from all the trial participants.

To address the personalized aspect of precision medicine, we also proposed four trial
performance evaluation criteria in addition to the traditional operating characteristics. The
criteria include CIL, FIL, PCO and PFO for both currently enrolled patients and future
patients. These criteria numerically present how well the trial design will offer patients
their own personalized optimal treatment.

Our results have shown that ASD always has the lowest power, while SEDAR has the
highest power in most scenarios. The main difference between AED or SEDAR and ASD
is that both AED and SEDAR are ‘enrichment’ designs, enrolling more ‘sensitive’ patients
than ASD, which enrolls all patients without selection.

To help clarify the relative performance of power between AED and SEDAR, denote by
r|E the response rate among all patients in a trial who receive the experimental treatment
(E), and r|C the response rate among thosewho receive the control treatment (C). Themain
reason for the better power of SEDAR versus AED in most of our simulation scenarios is
that r|E − r|C is larger in the SEDAR trials than in the AED trials. This is caused by the
covariate-based outcome-adaptive randomization adopted by SEDAR. A toy example is
given below.

Suppose the population consists of two groups of patients: 1/2 sensitive and 1/2 non-
sensitive. For sensitive patients, the response rates by E and C are 0.6 and 0.3, respectively.
For non-sensitive patients, the response rate is 0.3 regardless of treatment. Assume the total
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sample size is 300. By ASD, due to its non-selective enrollment and equal randomization,
it is easy to see that it results in r|E − r|C = 0.15. Among the patients who received E, the
ratio between sensitive and nonsensitive patients is 1:1. Suppose that by the AEDdesign, 80
non-sensitive patients and 220 sensitive patients are enrolled. Due to the equal randomiza-
tion, among each group (sensitive or non-sensitive), 50% patients have received E, and 50%
receivedC. Then in this setting, r|E = 0.52, r|C = 0.30, thus r|E − r|C = 0.22. Among the
patients who received E, the ratio between sensitive and nonsensitive patients is 2.75:1.

For SEDAR, assume 100 non-sensitive and 200 sensitive patients are enrolled. By
SEDAR, non-sensitive patients are equally randomized between E andC, whereas sensitive
patients are more likely to be assigned to E. Assume 80% of sensitive patients have received
E, and 20% received C. In this setting, r|E ≈ 0.53, r|C = 0.30, thus r|E − r|C ≈ 0.23.
Among the patients who received E, the ratio between sensitive and nonsensitive patients
is 3.2:1. The effect size 0.23 may appear to be inflated by over-sample the sensitive patients
for arm E. However, if the arm C also had a ratio of 3.2:1 between sensitive and nonsensi-
tive patients, the effect size would still be 0.23 since that sensitive and nonsensitive patients
have the same response rate by the control treatment. In this sense, the effect size 0.23 is
still valid, but we must make it clear that this is for a special population with mixture ratio
3.2:1 between sensitive and nonsensitive patients.

SEDAR results in a higher value of r|E − r|C than ASD or AED, thus higher power.
Considering the fact these three designs end up different mixtures of sensitive and non-
sensitive patients, this may not sound like a fair comparison of power between them in
the traditional sense. However, this higher ‘power’ by SEDAR does indicate that its better
ability to end up with a mixture of patients that best reflect the benefit of E over C, thus
leading to better chance of new drug discovery.

This brings in other important questions. How to estimate the ‘treatment effects’ for the
AED and SEDAR trials? Do the above results show that SEDAR introduces bias or overes-
timate the benefit of E over C? This depends on how we interpret the results from the trial.
In the above example, since the treatment effects ofC are the same in sensitive and nonsen-
sitive patients, the ratio of these two groups of patients has no impact on r|C. Therefore,
when this ratio is 3.2:1, we have r|E − r|C ≈ 0.23. Based on this interpretation, there is
not a problem of bias. However, more careful considerations are needed for estimating and
reporting treatment effects for enrichment trials, as described below.

All enrichment designs need extra work to estimate an overall treatment effect due
to their selective enrollment. They all have to report subset-specific treatment effects.
For example, those enrichment designs utilizing pre-specified categories, such as posi-
tive and negative subgroups of some specific biomarkers, usually report treatment effects
for each category. Depending on whether and how many biomarker negative patients
are enrolled, such an enrichment trial may or may not report the treatment effects for
the biomarker negative subgroups. If biomarker negative patients are enrolled but under-
sampled, then special considerations are needed for the estimation of the overall treatment
effect. Moreover, such pre-specified categories may not exist or well-defined before a
trial is conducted. The effects of many targeted therapies cannot be well separated by
the positive/negative status of biomarkers. Even the cut-off values for biomarker posi-
tive/negative status may not be well established before a trial is conducted. Our proposed
design is proposed for such a situation. With multiple biomarkers, it may not be feasible
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to make inference for all the possible combination of biomarker positive/negaitve sub-
groups because some of them may have a small sample size. Therefore, we fit models
to select sensitive patients. Then the treatment effect estimation become complicated in
this situation. It requires additional work to estimate the overall treatment effect, which
needs to account for the time-varying treatment selection procedure. This warrants future
research.

For clinical trials that do not consider patients’ biomarkers X or in which the biomarker
is not predictive, the underlying assumption is that all patients are homogeneous and the
patient heterogeneity is ignored. In this situation, it is true that, when compared with equal
randomization, adaptive randomization will lose power with some exceptions (e.g. some
scenarios with binary outcomes). However, in this paper, we account for patient hetero-
geneity and use regression models of response on X to predict future patients response
rates to E or C. Although both AED and SEDAR use these results to select patients to
enroll, only SEDAR uses these results to adjust patients’ probability to receive E or C. The
consequence is that, as seen from above, SEDAR trials have larger values of r|E − r|C, and
thus higher power levels than AED.

The purpose of our proposal is not to compare three different designs with respect to
power within a fixed patient population. Our purpose is to conduct a randomized phase
II trial to identify subpopulations in which a new drug would work better than the stan-
dard treatment. In this context, the higher power performance for SEDAR indicates its
better ability to identify such subpopulations. This means there is a higher chance to suc-
cess using the proposed SEDAR design rather than ASD or AED. This makes SEDAR a
useful design for pharmaceutical development. Our proposed design is not intended for
phase III confirmatory trials; rather it is for phase II exploratory trials.

Another feature in our designs affects the power. In the simulations, for AED and
SEDAR, we have used slightly different enrollment functions for non-sensitive patients.
While AED gives a zero probability for non-sensitive patients to enroll, SEDAR gives
a probability between 0.1 and 1 for them. This difference favors AED for power (i.e.
should make AED have higher power than SEDAR). The final power is the combined
effect of this enrollment function and the above effect on r|E − r|C caused by the adaptive
randomization.

Our results have also shown that adopting an enrichment strategy – oversampling the
sensitive patients and undersampling the nonsensitive patients will offer benefits to trial
participants. This is particularly important for late-stage cancer patients since many will
need to enroll in clinical trials to have access to novel treatments. The enrichment strat-
egy described here can be applied to other biomarker adaptive designs [8,13,25,38]. For
example, the recently proposed enriched biomarker stratified design and the auxiliary-
variable-enriched biomarker stratified design also show that applying an enrichment
strategy can result in a more cost-efficient design in terms of power [40,41]. For both of
these designs, the issue is how to choose the optimal enrichment proportion. Our proposed
design uses a continuous loss function based on the response rate estimates for each treat-
ment for a given patient using a classification algorithm. In addition to using an enrichment
strategy to increase trial efficiency, our proposed design also utilizes Bayesian adaptive ran-
domization approach to sequentially update treatment assignment probabilities based on
patients’ biomarker signatures measured at baseline. The simulation results imply that our
design has more promising trial operating characteristics in most scenarios.
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Although our design has distinct advantages, there are some caveats. The complexity
of utilizing an enrichment strategy as well as a Bayesian adaptive randomization scheme,
yields operational complexities. In addition, in common with other types of adaptive
enrichment trials, there is a potential for the trial duration to increase and raise issues
of interpretation of the final tests and treatment effect estimates arising from the adaptive
enrichment process. Nevertheless, our proposed design allows more patients to receive
optimal personalized treatments, thus yielding a higher overall response rate on the trial.
It can identify therapies that are effective only in a sensitive subset, increase the chance to
discover a successful new drug, and outperform the all-comers equal randomization trial
designs in many scenarios.
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